Basics of DNA Replication*

OpenStax

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0†

Abstract

By the end of this section, you will be able to:

- Explain how the structure of DNA reveals the replication process
- Describe the Meselson and Stahl experiments

The elucidation of the structure of the double helix provided a hint as to how DNA divides and makes copies of itself. This model suggests that the two strands of the double helix separate during replication, and each strand serves as a template from which the new complementary strand is copied. What was not clear was how the replication took place. There were three models suggested (Figure 1): conservative, semi-conservative, and dispersive.

*Version 1.5: Apr 10, 2013 7:51 pm -0000
†http://creativecommons.org/licenses/by/3.0/
Figure 1: The three suggested models of DNA replication. Grey indicates the original DNA strands, and blue indicates newly synthesized DNA.
In conservative replication, the parental DNA remains together, and the newly formed daughter strands are together. The semi-conservative method suggests that each of the two parental DNA strands act as a template for new DNA to be synthesized; after replication, each double-stranded DNA includes one parental or “old” strand and one “new” strand. In the dispersive model, both copies of DNA have double-stranded segments of parental DNA and newly synthesized DNA interspersed.

Meselson and Stahl were interested in understanding how DNA replicates. They grew *E. coli* for several generations in a medium containing a “heavy” isotope of nitrogen (\(^{15}\text{N}\)) that gets incorporated into nitrogenous bases, and eventually into the DNA (Figure 2).
Figure 2: Meselson and Stahl experimented with E. coli grown first in heavy nitrogen (15N) then in 14N. DNA grown in 15N (red band) is heavier than DNA grown in 14N (orange band), and sediments to a lower level in cesium chloride solution in an ultracentrifuge. When DNA grown in 15N is switched to media containing 14N, after one round of cell division the DNA sediments halfway between the 15N and 14N levels, indicating that it now contains fifty percent 14N. In subsequent cell divisions, an increasing amount of DNA contains 14N only. This data supports the semi-conservative replication model. (credit: modification of work by Mariana Ruiz Villareal)

The E. coli culture was then shifted into medium containing 14N and allowed to grow for one generation. The cells were harvested and the DNA was isolated. The DNA was centrifuged at high speeds in an ultracentrifuge. Some cells were allowed to grow for one more life cycle in 14N and spun again. During the density gradient centrifugation, the DNA is loaded into a gradient (typically a salt such as cesium chloride or sucrose) and spun at high speeds of 50,000 to 60,000 rpm. Under these circumstances, the DNA will form a band according to its density in the gradient. DNA grown in 15N will band at a higher density position than that grown in 14N. Meselson and Stahl noted that after one generation of growth in 14N after they had
been shifted from 15N, the single band observed was intermediate in position in between DNA of cells grown exclusively in 15N and 14N. This suggested either a semi-conservative or dispersive mode of replication. The DNA harvested from cells grown for two generations in 14N formed two bands: one DNA band was at the intermediate position between 15N and 14N, and the other corresponded to the band of 14N DNA. These results could only be explained if DNA replicates in a semi-conservative manner. Therefore, the other two modes were ruled out.

During DNA replication, each of the two strands that make up the double helix serves as a template from which new strands are copied. The new strand will be complementary to the parental or “old” strand. When two daughter DNA copies are formed, they have the same sequence and are divided equally into the two daughter cells.

Click through this tutorial\(^1\) on DNA replication.

\(^1\)http://openstaxcollege.org/l/DNA_replicatio2
1 Section Summary

The model for DNA replication suggests that the two strands of the double helix separate during replication, and each strand serves as a template from which the new complementary strand is copied. In conservative replication, the parental DNA is conserved, and the daughter DNA is newly synthesized. The semi-conservative method suggests that each of the two parental DNA strands acts as template for new DNA to be synthesized; after replication, each double-stranded DNA includes one parental or “old” strand and one “new” strand. The dispersive mode suggested that the two copies of the DNA would have segments of parental DNA and newly synthesized DNA.

2 Review Questions

Exercise 1
Meselson and Stahl’s experiments proved that DNA replicates by which mode?

a. conservative
b. semi-conservative
c. dispersive
d. none of the above

Exercise 2
If the sequence of the 5'-3' strand is AATGCTAC, then the complementary sequence has the following sequence:

a. 3'-AATGCTAC-5'
b. 3'-CATCGTAA-5'
c. 3'-TTACGATG-5'
d. 3'-GTagcatt-5'

3 Free Response

Exercise 3
How did the scientific community learn that DNA replication takes place in a semi-conservative fashion?
Solutions to Exercises in this Module

to Exercise (p. 6)
B
C
to Exercise (p. 6)
Meselson’s experiments with *E. coli* grown in 15N deduced this finding.